基于参考的图像超分辨率(REFSR)旨在利用辅助参考(REF)图像为超溶解的低分辨率(LR)图像。最近,RefSR引起了极大的关注,因为它提供了超越单图SR的替代方法。但是,解决REFSR问题有两个关键的挑战:(i)当它们显着不同时,很难匹配LR和Ref图像之间的对应关系; (ii)如何将相关纹理从参考图像转移以补偿LR图像的细节非常具有挑战性。为了解决RefSR的这些问题,本文提出了一个可变形的注意变压器,即DATSR,具有多个尺度,每个尺度由纹理特征编码器(TFE)模块组成,基于参考的可变形注意(RDA)模块和残差功能聚合(RFA)模块。具体而言,TFE首先提取图像转换(例如,亮度)不敏感的LR和REF图像,RDA可以利用多个相关纹理来补偿更多的LR功能信息,而RFA最终汇总了LR功能和相关纹理,以获得更愉快的宜人的质地结果。广泛的实验表明,我们的DATSR在定量和质量上实现了基准数据集上的最新性能。
translated by 谷歌翻译
Generic Object Tracking (GOT) is the problem of tracking target objects, specified by bounding boxes in the first frame of a video. While the task has received much attention in the last decades, researchers have almost exclusively focused on the single object setting. Multi-object GOT benefits from a wider applicability, rendering it more attractive in real-world applications. We attribute the lack of research interest into this problem to the absence of suitable benchmarks. In this work, we introduce a new large-scale GOT benchmark, LaGOT, containing multiple annotated target objects per sequence. Our benchmark allows researchers to tackle key remaining challenges in GOT, aiming to increase robustness and reduce computation through joint tracking of multiple objects simultaneously. Furthermore, we propose a Transformer-based GOT tracker TaMOS capable of joint processing of multiple objects through shared computation. TaMOs achieves a 4x faster run-time in case of 10 concurrent objects compared to tracking each object independently and outperforms existing single object trackers on our new benchmark. Finally, TaMOs achieves highly competitive results on single-object GOT datasets, setting a new state-of-the-art on TrackingNet with a success rate AUC of 84.4%. Our benchmark, code, and trained models will be made publicly available.
translated by 谷歌翻译
Unsupervised sim-to-real domain adaptation (UDA) for semantic segmentation aims to improve the real-world test performance of a model trained on simulated data. It can save the cost of manually labeling data in real-world applications such as robot vision and autonomous driving. Traditional UDA often assumes that there are abundant unlabeled real-world data samples available during training for the adaptation. However, such an assumption does not always hold in practice owing to the collection difficulty and the scarcity of the data. Thus, we aim to relieve this need on a large number of real data, and explore the one-shot unsupervised sim-to-real domain adaptation (OSUDA) and generalization (OSDG) problem, where only one real-world data sample is available. To remedy the limited real data knowledge, we first construct the pseudo-target domain by stylizing the simulated data with the one-shot real data. To mitigate the sim-to-real domain gap on both the style and spatial structure level and facilitate the sim-to-real adaptation, we further propose to use class-aware cross-domain transformers with an intermediate domain randomization strategy to extract the domain-invariant knowledge, from both the simulated and pseudo-target data. We demonstrate the effectiveness of our approach for OSUDA and OSDG on different benchmarks, outperforming the state-of-the-art methods by a large margin, 10.87, 9.59, 13.05 and 15.91 mIoU on GTA, SYNTHIA$\rightarrow$Cityscapes, Foggy Cityscapes, respectively.
translated by 谷歌翻译
Depth cues are known to be useful for visual perception. However, direct measurement of depth is often impracticable. Fortunately, though, modern learning-based methods offer promising depth maps by inference in the wild. In this work, we adapt such depth inference models for object segmentation using the objects' ``pop-out'' prior in 3D. The ``pop-out'' is a simple composition prior that assumes objects reside on the background surface. Such compositional prior allows us to reason about objects in the 3D space. More specifically, we adapt the inferred depth maps such that objects can be localized using only 3D information. Such separation, however, requires knowledge about contact surface which we learn using the weak supervision of the segmentation mask. Our intermediate representation of contact surface, and thereby reasoning about objects purely in 3D, allows us to better transfer the depth knowledge into semantics. The proposed adaptation method uses only the depth model without needing the source data used for training, making the learning process efficient and practical. Our experiments on eight datasets of two challenging tasks, namely camouflaged object detection and salient object detection, consistently demonstrate the benefit of our method in terms of both performance and generalizability.
translated by 谷歌翻译
How to identify and segment camouflaged objects from the background is challenging. Inspired by the multi-head self-attention in Transformers, we present a simple masked separable attention (MSA) for camouflaged object detection. We first separate the multi-head self-attention into three parts, which are responsible for distinguishing the camouflaged objects from the background using different mask strategies. Furthermore, we propose to capture high-resolution semantic representations progressively based on a simple top-down decoder with the proposed MSA to attain precise segmentation results. These structures plus a backbone encoder form a new model, dubbed CamoFormer. Extensive experiments show that CamoFormer surpasses all existing state-of-the-art methods on three widely-used camouflaged object detection benchmarks. There are on average around 5% relative improvements over previous methods in terms of S-measure and weighted F-measure.
translated by 谷歌翻译
Learning continuous image representations is recently gaining popularity for image super-resolution (SR) because of its ability to reconstruct high-resolution images with arbitrary scales from low-resolution inputs. Existing methods mostly ensemble nearby features to predict the new pixel at any queried coordinate in the SR image. Such a local ensemble suffers from some limitations: i) it has no learnable parameters and it neglects the similarity of the visual features; ii) it has a limited receptive field and cannot ensemble relevant features in a large field which are important in an image; iii) it inherently has a gap with real camera imaging since it only depends on the coordinate. To address these issues, this paper proposes a continuous implicit attention-in-attention network, called CiaoSR. We explicitly design an implicit attention network to learn the ensemble weights for the nearby local features. Furthermore, we embed a scale-aware attention in this implicit attention network to exploit additional non-local information. Extensive experiments on benchmark datasets demonstrate CiaoSR significantly outperforms the existing single image super resolution (SISR) methods with the same backbone. In addition, the proposed method also achieves the state-of-the-art performance on the arbitrary-scale SR task. The effectiveness of the method is also demonstrated on the real-world SR setting. More importantly, CiaoSR can be flexibly integrated into any backbone to improve the SR performance.
translated by 谷歌翻译
Recent works have shown that unstructured text (documents) from online sources can serve as useful auxiliary information for zero-shot image classification. However, these methods require access to a high-quality source like Wikipedia and are limited to a single source of information. Large Language Models (LLM) trained on web-scale text show impressive abilities to repurpose their learned knowledge for a multitude of tasks. In this work, we provide a novel perspective on using an LLM to provide text supervision for a zero-shot image classification model. The LLM is provided with a few text descriptions from different annotators as examples. The LLM is conditioned on these examples to generate multiple text descriptions for each class(referred to as views). Our proposed model, I2MVFormer, learns multi-view semantic embeddings for zero-shot image classification with these class views. We show that each text view of a class provides complementary information allowing a model to learn a highly discriminative class embedding. Moreover, we show that I2MVFormer is better at consuming the multi-view text supervision from LLM compared to baseline models. I2MVFormer establishes a new state-of-the-art on three public benchmark datasets for zero-shot image classification with unsupervised semantic embeddings.
translated by 谷歌翻译
Novel view synthesis and 3D modeling using implicit neural field representation are shown to be very effective for calibrated multi-view cameras. Such representations are known to benefit from additional geometric and semantic supervision. Most existing methods that exploit additional supervision require dense pixel-wise labels or localized scene priors. These methods cannot benefit from high-level vague scene priors provided in terms of scenes' descriptions. In this work, we aim to leverage the geometric prior of Manhattan scenes to improve the implicit neural radiance field representations. More precisely, we assume that only the knowledge of the scene (under investigation) being Manhattan is known - with no additional information whatsoever - with an unknown Manhattan coordinate frame. Such high-level prior is then used to self-supervise the surface normals derived explicitly in the implicit neural fields. Our modeling allows us to group the derived normals, followed by exploiting their orthogonality constraints for self-supervision. Our exhaustive experiments on datasets of diverse indoor scenes demonstrate the significant benefit of the proposed method over the established baselines.
translated by 谷歌翻译
In unsupervised domain adaptation (UDA), a model trained on source data (e.g. synthetic) is adapted to target data (e.g. real-world) without access to target annotation. Most previous UDA methods struggle with classes that have a similar visual appearance on the target domain as no ground truth is available to learn the slight appearance differences. To address this problem, we propose a Masked Image Consistency (MIC) module to enhance UDA by learning spatial context relations of the target domain as additional clues for robust visual recognition. MIC enforces the consistency between predictions of masked target images, where random patches are withheld, and pseudo-labels that are generated based on the complete image by an exponential moving average teacher. To minimize the consistency loss, the network has to learn to infer the predictions of the masked regions from their context. Due to its simple and universal concept, MIC can be integrated into various UDA methods across different visual recognition tasks such as image classification, semantic segmentation, and object detection. MIC significantly improves the state-of-the-art performance across the different recognition tasks for synthetic-to-real, day-to-nighttime, and clear-to-adverse-weather UDA. For instance, MIC achieves an unprecedented UDA performance of 75.9 mIoU and 92.8% on GTA-to-Cityscapes and VisDA-2017, respectively, which corresponds to an improvement of +2.1 and +3.0 percent points over the previous state of the art. The implementation is available at https://github.com/lhoyer/MIC.
translated by 谷歌翻译
Blind image super-resolution (Blind-SR) aims to recover a high-resolution (HR) image from its corresponding low-resolution (LR) input image with unknown degradations. Most of the existing works design an explicit degradation estimator for each degradation to guide SR. However, it is infeasible to provide concrete labels of multiple degradation combinations (\eg, blur, noise, jpeg compression) to supervise the degradation estimator training. In addition, these special designs for certain degradation, such as blur, impedes the models from being generalized to handle different degradations. To this end, it is necessary to design an implicit degradation estimator that can extract discriminative degradation representation for all degradations without relying on the supervision of degradation ground-truth. In this paper, we propose a Knowledge Distillation based Blind-SR network (KDSR). It consists of a knowledge distillation based implicit degradation estimator network (KD-IDE) and an efficient SR network. To learn the KDSR model, we first train a teacher network: KD-IDE$_{T}$. It takes paired HR and LR patches as inputs and is optimized with the SR network jointly. Then, we further train a student network KD-IDE$_{S}$, which only takes LR images as input and learns to extract the same implicit degradation representation (IDR) as KD-IDE$_{T}$. In addition, to fully use extracted IDR, we design a simple, strong, and efficient IDR based dynamic convolution residual block (IDR-DCRB) to build an SR network. We conduct extensive experiments under classic and real-world degradation settings. The results show that KDSR achieves SOTA performance and can generalize to various degradation processes. The source codes and pre-trained models will be released.
translated by 谷歌翻译